Para leer

LAS LEYES DE MENDEL

Las tres leyes de Mendel explican y predicen cómo van a ser los caracteres físicos (fenotipo) de un nuevo individuo. Frecuentemente se han descrito como «leyes para explicar la transmisión de caracteres» (herencia genética) a la descendencia. Desde este punto de vista, de transmisión de caracteres, estrictamente hablando no correspondería considerar la primera ley de Mendel (Ley de la uniformidad). Es un error muy extendido suponer que la uniformidad de los híbridos que Mendel observó en sus experimentos es una ley de transmisión, pero la dominancia nada tiene que ver con la transmisión, sino con la expresión del genotipo. Por lo que esta observación mendeliana en ocasiones no se considera una ley de Mendel. Así pues, hay tres leyes de Mendel que explican los caracteres de la descendencia de dos individuos, pero solo son dos las leyes mendelianas de transmisión: la ley de segregación de caracteres independientes (2.ª ley, que, si no se tiene en cuenta la ley de uniformidad, es descrita como 1.ª Ley) y la ley de la herencia independiente de caracteres (3.ª ley, en ocasiones descrita como 2.ª Ley).

1.ª LEY DE MENDEL: Principio de la uniformidad de los heterocigotos de la primera generación filial

Establece que si se cruzan dos razas puras (un homocigoto dominante con uno recesivo) para un determinado carácter, los descendientes de la primera generación serán todos iguales entre sí, fenotípica y genotípicamente, e iguales fenotípicamente a uno de los progenitores (de genotipo dominante), independientemente de la dirección del cruzamiento. Expresado con letras mayúsculas las dominantes (A = amarillo) y minúsculas las recesivas (a = verde), se representaría así: AA x aa = Aa, Aa, Aa, Aa. En pocas palabras, existen factores para cada carácter los cuales se separan cuando se forman los gametos y se vuelven a unir cuando ocurre la fecundación.

 

A

A

a

Aa

Aa

a

Aa

Aa

2.ª LEY DE MENDEL: Ley de la segregación de los caracteres en la segunda generación filial

Esta ley establece que durante la formación de los gametos, cada alelo de un par se separa del otro miembro para determinar la constitución genética del gameto filial. Es muy habitual representar las posibilidades de hibridación mediante un cuadro de Punnett.

Mendel obtuvo esta ley al cruzar diferentes variedades de individuos heterocigotos (diploides con dos variantes alélicas del mismo gen: Aa) y pudo observar en sus experimentos que obtenía muchos guisantes con características de piel amarilla y otros (menos) con características de piel verde, comprobó que la proporción era de 3/4 de color amarilla y 1/4 de color verde (3:1). Aa x Aa = AA, Aa, Aa, aa.

 

A

a

A

AA

Aa

a

Aa

aa

Según la interpretación actual, los dos alelos, que codifican para cada característica, son segregados durante la producción de gametos mediante una división celular meiótica. Esto significa que cada gameto va a contener un solo alelo para cada gen. Lo cual permite que los alelos materno y paterno se combinen en el descendiente, asegurando la variación.

Para cada característica, un organismo hereda dos alelos, uno de cada progenitor. Esto significa que en las células somáticas, un alelo proviene de la madre y otro del padre. Estos pueden ser homocigotos o heterocigotos.

En palabras del propio Mendel:6

Resulta ahora claro que los híbridos forman semillas que tienen el uno o el otro de los dos caracteres diferenciales, y de estos la mitad vuelven a desarrollar la forma híbrida, mientras que la otra mitad produce plantas que permanecen constantes y reciben el carácter dominante o el recesivo en igual número.

3.ª LEY DE MENDEL: Ley de la independencia de los caracteres hereditarios

En ocasiones es descrita como la 2.ª ley, en caso de considerar solo dos leyes (criterio basado en que Mendel solo estudió la transmisión de factores hereditarios y no su dominancia/expresividad). Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros, no existe relación entre ellos, por lo tanto el patrón de herencia de un rasgo no afectará al patrón de herencia de otro. Solo se cumple en aquellos genes que no están ligados (es decir, que están en diferentes cromosomas) o que están en regiones muy separadas del mismo cromosoma. En este caso la descendencia sigue las proporciones. Representándolo con letras, de padres con dos características AALL y aall (donde cada letra representa una característica y la dominancia por la mayúscula o minúscula), por entrecruzamiento de razas puras (1.ª Ley), aplicada a dos rasgos, resultarían los siguientes gametos: AL x al = AL, Al, aL, al.

 

AL

Al

aL

al

AL

AL-AL

Al-AL

aL-AL

al-AL

Al

AL-Al

Al-Al

aL-Al

al-Al

aL

AL-aL

Al-aL

aL-aL

al-aL

al

AL-al

Al-al

aL-al

al-al

Al intercambiar entre estos cuatro gametos, se obtiene la proporción AALL, AALl, AAlL, AAll, AaLL, AaLl, AalL, Aall, aALL, aALl, aAlL, aAll, aaLL, aaLl, aalL, aall.

Como conclusión tenemos: 9 con "A" y "L" dominantes, 3 con "a" y "L", 3 con "A" y "l" y 1 con genes recesivos "aall".

En palabras del propio Mendel:

Tomado de: https://es.wikipedia.org/wiki/Leyes_de_Mendel

Un grupo sanguíneo

Un grupo sanguíneo es una clasificación de la sangre de acuerdo con las características presentes en la superficie de los glóbulos rojos y en el suero de la sangre. Las dos clasificaciones más importantes para describir grupos sanguíneos en humanos son los antígenos (el sistema AB0) y el factor Rh.

El sistema ABO fue descubierto por Karl Landsteiner en 1901, convirtiéndolo en el primer sistema de grupo sanguíneo conocido; su nombre proviene de los tres tipos de grupos que se identifican: los de antígeno A, de antígeno B, y 0 sin antígenos. Las transfusiones de sangre entre grupos incompatibles pueden provocar una reacción inmunológica que puede desembocar en hemólisis, anemia, fallo renal, choque circulatorio y muerte.

Características del sistema AB0

  • Las personas con sangre del tipo A: sus glóbulos rojos expresan antígenos de tipo A en su superficie y anticuerpos contra los antígenos B en el plasma.
  • Las personas con sangre del tipo B: sus glóbulos rojos con antígenos de tipo B en su superficie y anticuerpos contra los antígenos A en el plasma.
  • Las personas con sangre del tipo 0: no tienen dichos antígenos (A o B) en la superficie de sus glóbulos rojos, pero tienen anticuerpos contra ambos tipos.
  • Las personas con sangre del tipo AB: teniendo ambos antígenos en la superficie de sus glóbulos rojos no fabrican anticuerpo alguno contra el antígeno A o B.

Esta clasificación internacional, debida a Landsteiner, ha reemplazado a la de Moss, en la cual el grupo 1 corresponde al grupo AB de la precedente, el grupo 2 al grupo A, el grupo 3 al grupo B, y el grupo 4 al grupo 0. Estos cuatro grupos sanguíneos constituyen el sistema AB0.

A causa de estas combinaciones, el tipo 0 puede transfundir a cualquier persona con cualquier tipo y el tipo AB puede recibir de cualquier tipo AB0.

La denominación «O» y/o «cero» es confusa, y ambas están muy extendidas. El austriaco Karl Landsteiner designó los grupos sanguíneos a principios del siglo XX.

Algunas fuentes indican que O podría deberse a la preposición ohne, que es ‘sin’ en alemán (sin antígeno). Sin embargo allí se dice Null Blutgruppe, y casi nunca la alternativa O Blutgruppe. En alemán «O» se dice /o/ y 0 (cero) se dice Null. En inglés «O» se lee /ou/ y a veces el cero también se lee /ou/ (por ejemplo en un número de teléfono, o en una fecha). Sistema ABO y O blood-group es de uso mayoritario en inglés. Otros idiomas de Europa mantienen la designación «null», en sus variantes zero, cero, nula, etc. En Centroamérica y el Caribe es más común «O positivo», evitando la similitud «cero positivo» con el término «seropositivo» ―se llama seropositivo al individuo que presenta en sangre anticuerpos que, cuando se le somete a la prueba diagnóstica apropiada, prueban la presencia de un determinado agente infeccioso― que mucha gente relaciona con el retrovirus VIH, causante del sida (síndrome de inmunodeficiencia adquirida).

Herencia del tipo ABO

Para tener una visión más amplia de como se produce la herencia genética se puede ver el artículo Gregor Mendel.

Son controlados por un solo gen con tres alelos: 0 (sin, por no poseer los antígenos del grupo A ni del grupo B), A, y B.

El alelo A da tipos A, el B tipos B y el alelo 0 tipos 0, siendo A y B alelos dominantes sobre 0. Así, las personas que heredan dos alelos 00 tienen tipo O; AA o A0 dan lugar a tipos A; y BB o B0 dan lugar a tipos B. Las personas AB tienen ambos genotipos debido a que la relación entre los alelos A y B es de codominancia. Por tanto, es imposible para un progenitor AB el tener un hijo con tipo 0, a excepción de que se de un fenómeno poco común conocido como el 'fenotipo Bombay' o diversas formas de mutación genética relativamente extrañas.

Los alelos A y B son dominantes sobre el alelo 0, lo que se llama codominancia.

Características del factor Rh

El sistema Rh es el segundo sistema de grupos sanguíneos en la transfusión de sangre humana con 50 antígenos actualmente. En 1940, el Dr. Landsteiner descubrió otro grupo de antígenos que se denominaron factores Rhesus (factores Rh), porque fueron descubiertos durante unos experimentos con monos Rhesus (Macaca mulatta). Las personas con factores Rhesus en su sangre se clasifican como "Rh positivas", mientras que aquellas sin los factores se clasifican como "Rh negativas". Es común para los individuos D-negativos no tener ningún anticuerpo anti-D IgG (inmunoglobulina-G) o IgM, ya que los anticuerpos anti-D no son normalmente producidos por sensibilización contra sustancias ambientales. Las personas Rh negativas forman anticuerpos contra el factor Rh, si están expuestas a sangre Rh positiva.

La prueba de Coombs cruzado se realiza para determinar la compatibilidad entre la sangre del donante y el receptor a transfundir.

Herencia del factor Rh

Los antígenos del sistema Rh son de naturaleza proteica. El antígeno D posee la mayor capacidad antigénica.
Los genes responsables de este sistema se localizan en el cromosoma 1. Existen tres teorías sobre el control genético:

  • Teoría de Fisher: Tres genes C, D, E (presentan antígeno D aquellas combinaciones que contengan el alelo D como por ejemplo cDe).
  • Teoría de Wiener: En determinados casos se expresa un antígeno D débil Du (rh-) como consecuencia de:
    • La represión del gen D por un gen C en posición trans (cromosoma opuesto).
    • La existencia de un alelo Du.
    • La formación de un antígeno D incompleto.
  • Teoría de Tippet (1986): Tippet emite la teoría de la existencia de dos genes RHD y RHCD, que son secuenciados en 1990 por Colin y colaboradores.

La enfermedad del Rh es provocada por una madre Rh– que concibe un hijo Rh+. Los anticuerpos de la sangre materna destruyen los Rh+ del bebé. Si la madre piensa tener un segundo hijo debe aplicarse una vacuna que elimina los anti-Rh, llamada la gammainmunoglobulina. Ésta debe ser aplicada dentro de las 72 horas después del primer parto, ya que si se tiene un segundo bebé con Rh+ la madre producirá anti-Rh en exceso que destruirá la sangre del hijo, produciendo una enfermedad llamada Eritroblastosis fetal (anemia severa), si es que el hijo nace, ya que la producción en exceso de los anti-Rh puede causar la muerte del hijo intrauterinamente.

Los grupos sanguíneos Rh (descubierto por Landsteiner y Wiener en 1940) tiene un interés clínico similar a los grupos ABO dada su relación con la enfermedad hemolítica del recién nacido (EHRN) y su importancia en la transfusión.

 

Los donantes de sangre y los receptores deben tener grupos compatibles. El grupo 0- es compatible con todos, por lo que quien tiene dicho grupo se dice que es un donante universal. Por otro lado, una persona cuyo grupo sea AB+, podrá recibir sangre de cualquier grupo, y se dice que es un receptor universal. Por ejemplo, una persona de grupo A– podrá recibir sangre 0– o A– y donar a AB+, AB–, A+ o A–​

Cabe mencionar que al recibirse la sangre de un donante, ésta se separa en distintos hemocomponentes y ahí se determina la compatibilidad con los debidos grupos sanguíneos. Actualmente ya casi no se realizan transfusiones de sangre entera, si así fuera no debemos utilizar el término "donante o receptor universal" ya que debemos tener en cuenta que la sangre entera está compuesta principalmente por glóbulos rojos (con sus antígenos) y por plasma (con sus anticuerpos). De ese modo, si se transfundiera a una persona de grupo A la sangre de un supuesto dador universal de grupo 0-, estaría ingresando anticuerpos anti A del donante que es grupo 0, (que como se mencionó, tiene anticuerpos anti-A y anti-B) a la persona a la que se le transfunde, provocando una incompatibilidad AB0 que podría provocar incluso la muerte.

Tomado de: https://es.wikipedia.org/wiki/Grupo_sangu%C3%ADneo